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ABSTRACT: We demonstrate that field-cycling 1H NMR relaxom-
etry can be used as a straightforward method of determining
translational diffusion coefficient D = D(M) in polymer systems.
The 1H spin−lattice relaxation dispersion for polybutadiene of
different molecular masses M (446 < M/(g mol−1) < 9470) is
measured at several temperatures (233 < T/K < 408) in a broad
frequency range. The diffusion coefficient D(T) is determined from
the intermolecular contribution to the overall spin−lattice relaxation
rate R1(ω), which dominates in the low-frequency range and follows a
universal dispersion law linear in √ω. The extracted diffusion
coefficients are in good agreement with the values obtained previously by field gradient NMR. The molecular mass dependence
D = D(M) exhibits two power laws: D ∝ M−1.3±0.1 and ∝M−2.3±0.1. They show a crossover for M = 2300, a value that is close to
the entanglement molecular mass Me of polybutadiene. The corresponding power-law exponents are close to the prediction of
the tube-reptation model.

Field-cycling (FC) 1H NMR relaxometry has become a
powerful tool for investigating dynamics of polymers.1,2 By

varying the external magnetic field B, the frequency dependence
of the spin−lattice relaxation rate R1(ω) = T1

−1(ω) can be
measured up to five decades in frequency if an earth field
compensation is employed.3,4 By converting the relaxation
dispersion into the susceptibility representation χNMR″ (ω) =
ω·R1(ω) and then applying frequency−temperature super-
position (FTS), master curves χNMR″ (ωτs) are obtained; τs
denotes the correlation time of the segmental (local)
dynamics.2,5,6 As at low temperatures the NMR relaxation is
solely determined by the segmental dynamics (other dynamical
processes are too slow to act as an effective relaxation
mechanism), τs is directly accessible. FTS is an important
property of cooperative dynamics in condensed matter and has
been applied for a long time, for example, in rheology of
polymers. This procedure allows extending the covered
frequency range and including both the polymer and the
segmental dynamics into the master curve. Consequently,
converting then the master curve into the time domain, the
dipolar correlation function CDD(t) is obtained for a time range
encompassing 10 decades. Characteristic power-law regimes of
the correlation function can be identified and compared with
the prediction of polymer theories, for example, the Doi−
Edwards tube-reptation model.7 Moreover, the segmental mean
square displacement of the polymer can be accessed in the
subdiffusive regime.8,9

The proton spin−lattice relaxation rate, R1(ω), consists of
intramolecular and intermolecular parts: R1(ω) = R1

intra(ω) +

R1
inter(ω).10 The intramolecular contribution stems from

protons belonging to the same molecule, while the
intermolecular contribution originates from dipole−dipole
interactions between protons of different molecules. Thus,
R1
intra(ω) is solely associated with molecular rotation, whereas

R1
inter(ω) is predominantly mediated by translational diffusion.

This enables 1H NMR relaxometry to probe the translational
motion, which has recently been demonstrated for low
molecular mass liquids.11,12 A comparison of the 1H NMR
relaxation results in the susceptibility representation with
dielectric spectroscopy data has revealed that the NMR
susceptibility shows a low-frequency excess contribution (of
varying amplitude) in addition to the primary or α-relaxation
peak.13 We have confirmed that the excess contribution
originates from the intermolecular relaxation contributions to
the total relaxation rate R1(ω).

14 The ultimate proof has been
given by isotope dilution experiments,15 that is, the excess
contribution disappears when the protonated molecules are
substituted by their deuterated counterpart, whose interactions
with protons are much weaker. The extrapolation of the
relaxation data to zero concentration limit gives R1

intra(ω) and,
hence, also R1

inter(ω).
The translational dipolar correlation function Cinter(t) =

⟨Ym
2*(Ω(t))Ym2 (Ω(0))/r3(t)r3(0)⟩ describes fluctuations of the

interspin distance r and the orientation of interspin axis with
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respect to the direction of the external magnetic field via the
angle Ω encoded in spherical harmonics of rank two Ym

2 . At
long times, the correlation function follows the power law
Cinter(t) ∝ t−3/2, which is characteristic of free diffusion.16 As a
result, the spectral density (Fourier transform of the correlation
function) and thus R1(ω) depends linearly on the square root
of the resonance frequency, √ω.16−19 As shown for low-M
liquids,11 the rotational correlation time is significantly shorter
than the corresponding correlation time for translational
motion, as expected. Combining this dependence of the
spectral density with the expression for the total 1H spin−
lattice relaxation rate,10 the low-frequency expansion (up to the
first-order term and in absence of other NMR active nuclei) of
the relaxation dispersion is given by16−19

ω ω ω ω= + = − ·R R R R
B

D
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where γH is the proton gyromagnetic ratio and N is the spin
density, that is, the number of spins per unit volume. The
intramolecular contribution associated with reorientational
dynamics is included in R1(0). This is allowed as the rotational
contribution is frequency independent in the low-frequency
range, that is, ωτrot ≪ 1 (τrot denotes the rotational correlation
time).
The important fact is that, besides the standard physical

constants, the factor B only depends on N. It does not include
any details of a diffusion model.16 Although eq 1 is well-known,
its potential could have been fully exploited only lately due to
commercial availability of FC spectrometers. Recently, diffusion
coefficients of several liquids have been determined via eq 1 and
they are in excellent agreement with those of field gradient
(FG) NMR diffusometry.11,12

In the present contribution, we demonstrate that the
described approach can also be applied to polymer systems,
and polybutadiene melts of different molecular masses M (mass
average) are used as an example. There eq 1 applies for ω≪ 1/
τt, where τt is the terminal relaxation time, that is, the Rouse
time or the disengagement time of the tube-reptation model for
nonentangled and entangled polymers, respectively (where one
assumes that τt ∝ D−1).
The dispersion of the spin−lattice relaxation above 10 kHz

was measured by an electronic field cycling spectrometer

Spinmaster FFC 2000 manufactured by STELAR. Experiments
were performed in the temperature range 233 < T/K < 408.
The relaxometer covers a 1H frequency range from ν = ω/2π =
10 kHz to 20 MHz (for 1H), while the switching time from
high polarization field to relaxation field is 3 ms. Lower 1H
frequencies were reached using a home-built spectrometer in
Darmstadt operating down to 400 Hz.3 The low frequencies
were achieved by utilizing a three-dimensional resistive coil
arrangement for compensating for the earth field and other
magnetic stray fields.4 The relaxation rate R1 was determined by
an exponential fit of the magnetization decay curve. The results
have been published previously in the susceptibility representa-
tion.3 In the present contribution we display and analyze the
corresponding relaxation dispersion curves.
Figure 1a presents the spin−lattice relaxation rate R1 plotted

against the square root of the frequency √ν for polybutadiene
(PB) with rather small molecular mass M/(g·mol−1) = 466 (PB
466). The polymer chains are still so short that essentially no
polymer dynamics is discovered and the system relaxes like a
low-molecular mass liquid.2,3 The solid lines at low frequencies
indicate the limiting, linear part of the relaxation dispersion. At
higher frequencies, the relaxation dispersion deviates from
linearity, and the linear part shrinks with decreasing temper-
ature (cf. inset in Figure 1a). The deviation from the linear
behavior is caused by the increasing importance of higher order
terms of the expansion of the translational spectral density (eq
1) and by a dispersion of the intramolecular relaxation
contribution for which the extreme narrowing condition
(ωτrot ≪ 1) does not hold any longer.
Figure 1b shows the relaxation rates R1 versus √ν for PB of

M = 2020 which is close to the entanglement molecular mass
Me ≅ 1800.20 Again, the solid lines indicate the linear part of
the relaxation dispersion observed at low frequencies.
Compared to the low-M system, PB 466, the range in which
R1(√ν) behaves linearly is rather small, but it becomes larger at
high temperatures (cf. inset of Figure 1b). The pronounced
difference from the data of low-M polybutadiene in Figure 1a is
caused by a significantly slower as well as by a stronger
relaxation dispersion due to polymer specific dynamics (cf.
below).
We analyzed the relaxation dispersion for a series of

polybutadienes of molecular masses M = 466, 777, 816, 1450,
2020, 2760, 4600, 9470 at several temperatures (data from ref
3). The procedure cannot be applied to higher M values as the
linear regime in Figure 1 becomes too small or is even beyond
the accessible frequency range. The relaxation data are shown
as master curves in Figure 4 and discussed further below. The
values of the diffusion coefficients, D = D(T), are extracted

Figure 1. 1H spin−lattice relaxation rates R1 of polybutadiene (PB) M = 466 (a) and M = 2020 (b) plotted as a function of the square root of the
Larmor frequency √ν in the temperature range as indicated (data from ref 3).
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from the slope of the linear part in Figure 1 and from
corresponding plots for the polybutadienes with different
molecular masses using eq 1, and displayed in Figure 2. For all

polybutadienes, the spin density N = 5.75 × 1028 m−3 was taken
as provided by the mass density ρ = 0.86 g/cm3.20 The
temperature dependence of N is marginal when comparing
diffusion coefficients on logarithmic scales. A super-Arrhenius
temperature dependence of the diffusion coefficients is
observed, and for each molecular mass D(T) can be well
interpolated by the Vogel−Fulcher−Tammann (VFT) equa-
tion. There is a trend that the M dependence becomes stronger
at high M. Note that the temperature range in which the
diffusion coefficients can be determined narrows with
increasing M. For comparison, we included the results of
Fleischer and Appel, which have been obtained at 373 K by
applying FG NMR which is presently the standard method
measuring diffusion coefficients in polymers.21

The M dependence of D is presented in Figure 3 and is
obtained by interpolating D(T) from FC NMR at T = 373 K
(dashed line in Figure 2). The results from both FC and FG
NMR nicely agree though the FC data appear to be
systematically slightly higher. Two power-laws D∝M−α are

revealed with a crossover at M ≅ 2300, which is quite close to
the entanglement molecular mass Me ≅ 1800.20 The tube-
reptation model predicts α = 1 for the Rouse regime and α = 2
for the entanglement regime. Fleischer and Appel have
attributed all their data points to the latter regime and have
reported an exponent α = 2.0.21 Considering the combined
results of NMR relaxometry and diffusometry, it seems that for
low M the Rouse regime is already seen. By interpolating both
data sets (straight lines), it has been obtained: α = 1.2 ± 0.1 for
M < Me and α = 2.3 ± 0.1 for M > Me. To our knowledge, this
is the first time that the crossover in D(M) has been found for
PB. In another work, Fleischer and Appel found two regimes in
the case of polydimethylsiloxane (PDMS) and polyethylene
oxide (PEO).22 In the entanglement region, the exponent is
similar to that found for polystyrene23 and hydrogenated
polybutadiene.24 It is well-known that the tube-reptation model
needs some modifications to account for effects such as
constraint release or contour length fluctuations.7

Equation 1 implies that 1H relaxation dispersion results
obtained at different temperatures can be scaled to follow a
master curve, at least at low frequencies where the expansion in
eq 1 applies.12 Thus, eq 1 can be rewritten in a master curve
form:

ω ωτ= −R R( )/ (0) 11 1 res (2)
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In Figure 4, such master curves are displayed for a series of
polybutadienes investigated in the temperature range as

indicated. Note that the master curves contain all relaxation
data discussed in the present paper (taken from ref 3), and for a
given M value, the data collapse even at high frequencies
beyond the linear low-frequency regime. This is a consequence
of the fact that translational-rotational coupling or more
generally FTS applies in good approximation for polymer
melts. The master curves for different M coincide in the linear
low frequency range but systematically differ at higher reduced
frequencies (ωτres)

0.5. Whereas for PB 466 the reduced

Figure 2. Diffusion coefficient D(T) for polybutadiene of different
molecular masses M as indicated extracted applying eq 1. Lines:
interpolation by VFT equation. Stars: results from field gradient NMR
at T = 373 K reported by Fleischer and Appel.21.

Figure 3. Dependence of the diffusion coefficient D on molecular mass
M, as obtained by field cycling (FC) NMR relaxometry and by field
gradient (FG) NMR;21 solid lines: power laws with exponents as
indicated; arrow marks the crossover at a molecular mass being close
to Me.

Figure 4. Master curves of PB of different M constructed from 1H
spin−lattice relaxation dispersion data obtained in the indicated
temperature ranges along eq 2; dashed line: universal linear low-
frequency limit.
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relaxation rate R1(ω)/R1(0) follows the linear dependence in a
wide frequency range, for the high-M polymers this regime is
significantly smaller and eventually, for M > 9470, vanishes.
The progressing bending over of R1 = R1(√ω) for increasing
M stems from increasing contributions of polymer specific
relaxation terms reflecting Rouse and entanglement dynamics
to the overall relaxation. In terms of their time-scale, they are
located between the terminal relaxation and the segmental
relaxation as demonstrated in our previous publications.2,3

In conclusion, the present study demonstrates that the
method of determining the diffusion coefficient from the low-
frequency slope of the 1H spin−lattice relaxation dispersion, as
already applied to low-molecular mass liquids,11,12 can also be
used for neat polymers. An extension to polymer solutions is
not straightforward as the method probes the relative
translational displacements among the proton bearing species.
NMR relaxometry allows probing rotational and translational
dynamics of polymer systems in a single experiment. The
rotational dynamics has been discussed in our previous works,
in which the temperature and molecular mass dependencies of
the segmental (reorientational) contribution dominating the
high-frequency behavior of the relaxation rate were analyzed in
addition to the polymer specific.2,3,5,6 In the present work, the
low-frequency features of the 1H relaxation rate were used to
complete the analysis of the polymer dynamics by extracting
the diffusion coefficients and inquire into their dependence on
temperature and molecular mass. Note that this evaluation is
only possible by attaining the relaxation rate at extremely low
frequencies. The obtained D(M) data agree well with those
reported by FG NMR, thus making FC NMR a further
technique probing diffusion of condensed matter.
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